July 20th, 2020

космос

В России разучились делать отражатели и держатели

«Первую российскую лунную станцию протестируют оборудованием из США
Готовность к запуску на Луну аппаратуры, установленной на первой в истории современной России посадочной станции «Луна-25», планируется проверить с помощью техники из США и Европы, следует из документов предприятия-производителя станции НПО им. Лавочкина (входит в «Роскосмос»), опубликованных на сайте госзакупок.
Согласно техническому заданию на поставку оснастки для проведения юстировочных работ по теме «Луна-Глоб», в Швейцарии предусматривается приобрести четыре сферических отражателя, а в США — 250 магнитных держателя и другую оснастку.
Использование иностранной аппаратуры для проверки российской лунной станции предприятие-производитель НПО им. Лавочкина (входит в «Роскосмос») объяснило отсутствием российских аналогов. «Использование импортного оборудования для проведения некоторых испытаний по программе создания космического аппарата «Луна-Глоб» (Луна-25) объясняется отсутствием аналогов у российских производителей», — сказали РИА Новости в пресс-службе предприятия.
Проверкой оборудования участие зарубежных стран в российской миссии не ограничивается. На борту «Луны-25» будет установлен изготовленный совместно со Швейцарией лазерный масс-спектрометр для изучения лунного грунта, а также ТВ-камера «Пилот» разработки Европейского космического агентства»

Наш комментарий: и после этого ещё кто-то будет рассуждать про батут?

Я ещё понимаю, если бы какая-нибудь сложная электроника, наподобие упомянутых лазерных масс-спектрометров и ТВ-камер. Но когда в РФ уже не умеют делать сферические отражатели и магнитные держатели - то это всё, что вам достаточно знать про «импортозамещение».

Хорошо ещё что хотя бы не разучились пользоваться батутами, сохранившимся с советских времён...
Buy for 110 tokens
Время бить тревогу. Когда-то самое престижное место в Москве, за очень короткий срок превратилось в одно из самых токсичных и опасных. (кадр из к/ф Волк с Уолл-Стрит) Считается, что Москва-Сити - детище чуть ли не самого Сергея Юрьевича Полонского. И, что удивительно, его сомнительная…
маразм

ГМО способны помочь в решении мусорной проблемы

"Генномодифицированный природный фермент эффективно разбирает пластик на кирпичики
Французские химики модифицировали природный фермент так, что он смог расщеплять на мономеры 90% полиэтилентерефталата (ПЭТ) — одного из наиболее распространенных видов пластика. Ученые взяли за основу кутиназу из листьев растений и повысили эффективность и стабильность этого фермента с помощью генной инженерии. Гидролиз ПЭТ занимает у модифицированного фермента всего 10 часов, а получаемая терефталевая кислота может быть очищена и использована для получения нового полиэтилентерефталата. Такой вторичный пластик по механическим свойствам не уступает пластику, синтезированному «с нуля» (из нефтепродуктов), а стоит значительно дешевле.
...
Впрочем, на практике с промышленным гидролизом ПЭТ пока дела обстоят непросто. Наличие множества ароматических фрагментов делает молекулу полиэтилентерефталата достаточно жесткой (малоподвижной) и химически инертной по отношению к гидролизу (E. Marten et al., 2005. Studies on the enzymatic hydrolysis of polyesters. II. Aliphatic–aromatic copolyesters). Один из возможных способов ускорить реакцию гидролиза заключается в использовании ферментов — особых веществ, которые катализируют химические реакции в живых системах, «помогая» им протекать в мягких условиях с высокой селективностью. Так как реакция гидролиза сложных эфиров в живых системах встречается часто, ученые стали искать энзимы, которые ускоряют такие реакции, и пробовать перенести их действие на гидролиз полиэтилентерефталата. Было описано уже несколько десятков подобных ферментов (R. Wei, W. Zimmermann, 2017. Microbial enzymes for the recycling of recalcitrant petroleum-based plastics: how far are we?), однако ни один из них не был достаточно эффективен для использования в промышленности. Кроме того, есть проблемы со стабильностью ферментов: гидролиз ПЭТ ускоряется при нагревании и лучше всего идет при температуре в районе температуры стеклования ПЭТ (65–75°C), когда молекула полимера становится более подвижной (A. M. Ronkvist et al., 2007. Cutinase-Catalyzed Hydrolysis of Poly(ethylene terephthalate)). Большинство ферментов при такой температуре постепенно разрушаются.
Настоящим прорывом в химической деградации ПЭТ стала недавняя совместная работа химиков из Института биотехнологии в Тулузе и компании Carbios. Вначале авторы сравнили между собой самые эффективные ферменты, которые уже были предложены ранее. Испытаниям подверглись пять разных ферментов: гидролазы BTA1 и BTA2 почвенной бактерии Thermobifida fusca, кутиназа патогенного гриба Fusarium solani pisi, ПЭТ-аза грамотрицательной бактерии и кутиназа компостных листьев LCC — фермент, который в природе отвечает за расщепление кутина, особого вещества, выделяемого верхним слоем листа растения для уменьшения потерь воды и состоящего преимущественно из жирных кислот и их эфиров.
...
Все четыре модифицированных фермента показали активность заметно выше, чем у исходной кутиназы LCC. При этом оба варианта с глицином оказались более эффективными, чем варианты с метионином. Эффективность двух глициновых вариантов (они обозначены ICCG и WCCG по первым буквам названий вводимых аминокислот) была очень близка: оба смогли расщепить 90% ПЭТ, но изолейциновый вариант справился быстрее (ему потребовалось 9,3 часа, а триптофановому — 10,5 часов).
В итоге именно ICCG-вариант модифицированного фермента LCC был выбран для испытаний в промышленных условиях. 20 килограммов полиэтилентерефталата измельчили и смешали с 78 литрами воды и 40 граммами фермента. Гидролиз проводили при температуре 72°C в слабощелочной среде (pH = 8), которую создали, добавив гидроксид натрия. После деполимеризации 90% исходного ПЭТ реакцию остановили и отделили твердый остаток полимера центрифугированием. Жидкую фазу затем пропустили через колонку с активированным углем и обработали раствором серной кислоты — это нужно, чтобы превратить терефталат натрия в терефталевую кислоту. После этого терефталевую кислоту можно отделить центрифугированием и перекристаллизацией.
Полученная таким образом терефталевая кислота имеет чистоту 99,8% и может быть использована для получения ПЭТ — здесь авторы придерживались стандартной методики: этерификация с этиленгликолем, затем поликонденсанция и твердофазная полимеризация. Скорость поликонденсации была такой же как в случае использования «первичной» терефталевой кислоты. Полученный полиэтилентерефталат также тщательно протестировали и убедились, что он не отличается от ПЭТ, полученного традиционным способом. Всего в этом эксперименте ученые получили 12 килограммов ПЭТ — 60% от того количества, которое исходно пустили на переработку. Из полученного полиэтилентерефталата также изготовили пластиковые бутылки для напитков и убедились, что по прозрачности и механическим свойствам они не уступают традиционным бутылкам.
Второй продукт деполимеризации — двуосновный спирт этиленгликоль — в настоящей работе не регенерировали, он остался в жидкой части продуктов реакции. Возможно, в дальнейшем можно будет перерабатывать и его тоже (и тем самым полностью разобрать и пересобрать заново молекулу ПЭТ), но пока что для получения ПЭТ использовали свежий этиленгликоль.
Еще одним продуктом реакции является сульфат натрия. Он получается, когда серная кислота реагирует с терефталатом натрия. На каждый килограмм перерабатываемого ПЭТ получается 600 граммов сульфата натрия — в пилотном эксперименте было получено 12 килограммов этого вещества, его тоже выделили и очистили. Сульфат натрия широко используется в современной промышленности (например, в производстве моющих средств, бумаги и стекла), поэтому этот продукт реакции пойдет не на свалку, а на продажу.
Предложенный в обсуждаемой работе метод гидролиза полиэтилентерефталата в мягких условиях и без использования дорогостоящего оборудования полностью готов к применению в промышленности. Авторы рассчитали, что при цене фермента 25 долларов за килограмм (получаемые промышленным способом целлюлозные ферменты сейчас стоят от 5 до 23 долларов за килограмм), стоимость фермента, необходимого для деполимеризации, будет составлять всего 4% от стоимости сырья для синтеза такого же количества ПЭТ «с нуля». По словам Алана Марти, сотрудника Carbios и одного из авторов статьи, его компания планирует перерабатывать по 90 тысяч тонн полиэтилентерефталата в год уже в 2025 году".

Публикуется в сокращении, полный текст по ссылке.

Наш комментарий: данная научная новость способна вызвать двойной баттхерт у "экологов" - во-первых, очередное подтверждение пользы от ГМО, во-вторых, сократятся их возможности спекулировать на "мусорной" проблеме